翻訳と辞書
Words near each other
・ Base CRM
・ Base curve radius
・ Base de datos
・ Base Decepción
・ Base defense operations center
・ Base Details
・ Base effect
・ Base end station
・ Base Erosion and Profit Shifting
・ Base excess
・ Base Exchange
・ Base excision repair
・ Base fee
・ Base Feeder
・ Base flow
Base flow (random dynamical systems)
・ Base FX
・ Base General Bernardo O'Higgins Riquelme
・ Base isolation
・ Base J
・ Base Jumpers
・ BASE jumping
・ Base level
・ Base Line, Little Rock
・ Base load power plant
・ Base locus
・ Base metal
・ Base modifying agent
・ Base Mérimée
・ Base of fire


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Base flow (random dynamical systems) : ウィキペディア英語版
Base flow (random dynamical systems)

In mathematics, the base flow of a random dynamical system is the dynamical system defined on the "noise" probability space that describes how to "fast forward" or "rewind" the noise when one wishes to change the time at which one "starts" the random dynamical system.
==Definition==
In the definition of a random dynamical system, one is given a family of maps \vartheta_ : \Omega \to \Omega on a probability space (\Omega, \mathcal, \mathbb). The measure-preserving dynamical system (\Omega, \mathcal, \mathbb, \vartheta) is known as the base flow of the random dynamical system. The maps \vartheta_ are often known as shift maps since they "shift" time. The base flow is often ergodic.
The parameter s may be chosen to run over
* \mathbb (a two-sided continuous-time dynamical system);
* [0, + \infty) \subsetneq \mathbb (a one-sided continuous-time dynamical system);
* \mathbb (a two-sided discrete-time dynamical system);
* \mathbb \cup \ (a one-sided discrete-time dynamical system).
Each map \vartheta_ is required
* to be a (\mathcal, \mathcal)-measurable function: for all E \in \mathcal, \vartheta_^ (E) \in \mathcal
* to preserve the measure \mathbb: for all E \in \mathcal, \mathbb (\vartheta_^ (E)) = \mathbb (E).
Furthermore, as a family, the maps \vartheta_ satisfy the relations
* \vartheta_ = \mathrm_ : \Omega \to \Omega, the identity function on \Omega;
* \vartheta_ \circ \vartheta_ = \vartheta_ for all s and t for which the three maps in this expression are defined. In particular, \vartheta_^ = \vartheta_ if - s exists.
In other words, the maps \vartheta_ form a commutative monoid (in the cases s \in \mathbb \cup \ and s \in [0, + \infty)) or a commutative group (in the cases s \in \mathbb and s \in \mathbb).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Base flow (random dynamical systems)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.